C2 Logs and Indices

1. June 2010 qu. 8
(a) Use logarithms to solve the equation $5^{3 w-1}=4^{250}$, giving the value of w correct to 3 s.f
(b) Given that $\log _{x}(5 y+1)-\log _{x} 3=4$, express y in terms of x.
2. Jan 2010 qu. 9
(i) Sketch the curve $y=6 \times 5^{x}$, stating the coordinates of any points of intersection with the axes.[3]
(ii) The point P on the curve $y=9^{x}$ has y-coordinate equal to 150 . Use logarithms to find the x-coordinate of P, correct to 3 significant figures.
(iii) The curves $y=6 \times 5^{x}$ and $y=9^{x}$ intersect at the point Q. Show that the x-coordinate of Q can be written as $x=\frac{1+\log _{3} 2}{2-\log _{3} 5}$.
3. June 2009 qu. 3

Use logarithms to solve the equation $7^{x}=2^{x+1}$, giving the value of x correct to 3 s.f
4. June 2009 qu. 9
(i) Sketch the graph of $y=4 k^{X}$, where k is a constant such that $k>1$. State the coordinates of any points of intersection with the axes.
(ii) The point P on the curve $y=4 k^{x}$ has its y-coordinate equal to $20 k^{2}$. Show that the x-coordinate of P may be written as $2+\log _{k} 5$.
(iii) (a) Use the trapezium rule, with two strips each of width $\frac{1}{2}$, to find an expression for

$$
\begin{equation*}
\text { the approximate value of } \quad \int_{0}^{1} 4 k^{x} \mathrm{~d} x . \tag{3}
\end{equation*}
$$

(b) Given that this approximate value is equal to 16 , find the value of k.
5. Jan 2009 qu. 8
(a) Given that $\log _{a} x=p$ and $\log _{a} y=q$, express the following in terms of p and q.
(i) $\quad \log _{a}(x y)$
(ii) $\log _{a}\left(\frac{a^{2} x^{3}}{y}\right)$
(b) (i) Express $\log _{10}\left(x^{2}-10\right)-\log _{10} x$ as a single logarithm.
(ii) Hence solve the equation $\log _{10}\left(x^{2}-10\right)-\log _{10} x=2 \log _{10} 3$.
6. June 2008 qu. 8
(i) Sketch the curve $y=2 \times 3^{x}$, stating the coordinates of any intersections with the axes.
(ii) The curve $y=2 \times 3^{x}$ intersects the curve $y=8^{x}$ at the point P. Show that the x-coordinate of

$$
\begin{equation*}
P \text { may be written as } \quad \frac{1}{3-\log _{2} 3} . \tag{5}
\end{equation*}
$$

7. Jan 2008 qu. 3

Express each of the following as a single logarithm:
(i) $\log _{a} 2+\log _{a} 3$,
[1]
(ii) $2 \log _{10} x-3 \log _{10} y$.
8. June 2007 qu. 3

Use logarithms to solve the equation $3^{2 x+1}=5^{200}$, giving the value of x correct to 3 significant figures.
8. June 2007 qu. 9

The polynomial $\mathrm{f}(x)$ is given by $\mathrm{f}(x)=x^{3}+6 x^{2}+x-4$.
(i) (a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence find the exact roots of the equation $\mathrm{f}(x)=0$.
(ii) (a) Show that the equation $2 \log _{2}(x+3)+\log _{2} x-\log _{2}(4 x+2)=1$ can be written in the form $\mathrm{f}(x)=0$.
(b) Explain why the equation $2 \log _{2}(x+3)+\log _{2} x-\log _{2}(4 x+2)=1$
has only one real root and state the exact value of this root.
9. Jan 2007 qu. 5
(a) (i) Express $\log _{3}(4 x+7)-\log _{3} x$ as a single logarithm.
(ii) Hence solve the equation $\log _{3}(4 x+7)-\log _{3} x=2$.
(b) Use the trapezium rule, with two strips of width 3, to find an approximate value for

$$
\begin{equation*}
\int_{3}^{9} \log _{10} x \mathrm{~d} x \quad \text { giving your answer correct to } 3 \text { significant figures. } \tag{4}
\end{equation*}
$$

10. Jan 2006 qu. 7
(i) Express each of the following in terms of $\log _{10} x$ and $\log _{10} y$.
(a) $\log _{10}\left(\frac{x}{y}\right)$
(b) $\quad \log _{10}\left(10 x^{2} y\right)$
[3]
(ii) Given that $2 \log _{10}\left(\frac{x}{y}\right)=1+\log _{10}\left(10 x^{2} y\right)$, find the value of y correct to 3 decimal places.
11. June 2005 qu. 7
(i) Evaluate $\log _{5} 15+\log _{5} 20-\log _{5} 12$.
(ii) Given that $y=3 \times 10^{2 x}$, show that $x=a \log _{10}(b y)$, where the values of the constants a and b are to be found.
